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Abstract

A simple technique was developed using conventional finite element analysis to

determine stress intensity factors (K ! and K2) for interface cracks under mixed-mode loading.

This technique involves the calculation of crack-tip stresses using non-singular finite elements.

These stresses are then combined and used in a lilnear regression procedure to calculate K l and

K 2. The technique was demonstrated by calculating K l and K 2 for three different bimaterial

combinations.

For the normal loading case, the calculated K 1 and K 2 were within 2.6% of an exact

solution. The normalized K l and K 2 under shear loading were shown to be related to the

normalized K 1 and K 2 under normal loading. Based on these relations a simple equation was

derived for calculating K t and K 2 for mixed-mode loading from a knowledge of K 1 and K 2

trader normal loading. Thus, for a given material combination and geometry, only one

solution of K l and K 2 (under normal loading) is required to determine K l and K 2 over the full

range of mixed-mode loading conditions.

The equation was verified by computing K l and K 2 for a mixed-mode case with equal

normal and shear loading. The correlation between the exact and the finite element values was

very good with errors of less than 3.7%.

This study provides a simple procedure to compute the K_/K 1 ratio which can be used

to characterize the stress state at the crack tip for various combinations of materials and

!oadings. Tests conducted over a range of K2/K 1 ratios could be used to fully characterize

interface fracture toughness.

Key Words: Bimaterial, finite element analysis, fracture mechanics, combined loading,

phase angle.



Introduction

The performance of advanced composite materials is not only affected by their

constituents but also by the character of the interface between the constituents. Interfacial

cracking, either in the form of delamination or fiber-matrix debonding, is a typical failure

mode in most classes of composite materials. Interracial cracking, by definition, follows a

predetermined path irrespective of the global loading. This, in conjunction with the mismatch

between the material properties at the interface, leads to inherently mixed-mode crack growth.

Unlike a crack in a homogeneous plate, mixed-mode conditions exist at an interface crack tip

even for pure mode I loading. It is, therefore, important to characterize interfacial cracking

over a range of mixed-mode conditions.

Linear elastic fracture mechanics (LEFM) concepts have been applied to the interface

crack problem since 1959 when Williams [1] first determined that stresses oscillate near the tip

of a semi-infinite interface crack. Other researchers [2-8] further examined the oscillatory

behavior of the crack-tip stress and displacement fields and the resulting small contact region

at a bimaterial crack. Rice and Sih [9] developed a solution for the stress intensity factors K 1

and K 2 for an interface crack between two semi-infinite plates subjected to a combination of

both normal and shear loading.

Unlike K ! and Kn, the mode I and mode II stress intensity factors for a crack in a

homogeneous material, bimaterial stress intensity factors K 1 and K 2 have some complicating

properties that reflect on their usefulness in the development of fracture criteria [9]. For

example, K l and K2 are not strictly associated with opening and Shear modes, respectively, as

in the homogeneous case. Additionally, K l and K2, as defined by Rice and Sih [9] and

Hutchinson et al. [10], are functions of an arbitrary length parameter. Rice [11] noted the

validity of the complex stress intensity factor K (= K l + iK 2, i = -4Z] ") as a crack-tip

characterizing parameter for cases of small scale nonlinear material behavior or small scale

contact zones at the crack tip. Although K l and K 2 cannot be interpreted as mode I and mode

II quantities it is possible to use the K2/K l ratio to describe the stress state at the crack-tip.
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Alternative definitions for the stress intensity factors were recently provided by Shih and Asaro

[12] which eliminate the arbitrary length parameter and can be related to K_ and K 2 in a simple

way.

The strain energy release rate G was also examined by many researchers [13-16] as a

another fracture parameter to characterize crack growth at a bimaterial interface. However,

the mode I and mode II components of the strain energy release rate (G_ and G n) are not well

defined as was illustrated by Sun and Jih [17], Raju, et al. [18] and many other researchers.

Recent studies [16, 19] have used the critical total strain energy release rate G¢ to characterize

interface fracture toughness and the K2/K _ ratio to describe the crack-tip stress state for the

given test conditions. A complete characterization of interface toughness would then involve

the determination of Go over a range of K2/K 1 ratios.

Closed-form methods for calculating K 1 and K2 for interface crack problems are limited

to a few special cases due to inherent mathematical difficulties. Numerical procedures are,

therefore, required when K_ and K2 are desired for more general configurations and loadings.

A boundary collocation method was used in [20] to generate interracial K1 and K2 for a finite

bimaterial plate. Special hybrid finite elements were developed in [21] and [22] to calculate

K1 and K 2. Conventional, non-singular finite elements were employed in [23] to calculate K 1

and K2 from crack flank displacements and an extended form of the J-integral. The finite

element method was also used together with domain integrals [11,24,25] to calculate K 1 and

K2. The finite element iterative method was used in [26] to evaluate K 1 and K2 for a crack

between dissimilar media. An eigenfunetion expansion variational method was introduced in

[27] to calculate K_ and K2. Each of the above mentioned numerical approaches requires its

own computational scheme to handle the problem and has given satisfactory results.

In the present study, an alternative and convenient method of analysis is proposed for

determining K_ and K2 under mixed-mode loading. First, a technique using the finite element

method with non-singular elements was developed to calculate K_ and K2 under normal

loading. K l and K2 were calculated for three different material combinations: steel/aluminum,
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aluminum/epoxy,and steel/epoxy,andcompared with the classical solution to evaluate the

technique. Next, simple relations were derived between the K l and K2 due to normal and

shear loading. These relations were used to derive simple equations to calculate K 1 and K2

under mixed-mode loading from a knowledge of K_ and K: under normal loading. The results

from the simple equations were evaluated by comparing with finite element results for the

mixed-mode case of equal normal and shear loading. The simple equations were then used to

study the K2/K l ratios for different material combinations over the full range of mixed-mode

loading conditions.

Theoretical Background

Within the framework of LEFM, solutions for the singular stress fields at the crack-tip,

the stress intensity factors and their relations to the strain energy release rates exist and are

easily represented in concise form for an interracial crack between two semi-infinite plates.

Consider a crack of length 2a lying along the interface of material 1 and material 2

(Fig. 1). The Young's moduli and Poisson's ratios of material 1 and 2 are given by E 1, Jq,

and E2, u2, respectively. The coordinate system x-y-z has its origin at the center of the crack

with the x-axis parallel to the interface and the y-axis normal to the interface. The distance r

from the crack tip is measured along the interface. The body is remotely loaded by a uniform

stress o_ normal to the crack and a uniform shear stress o _. Only plane strain (ezz=O)

deformations are considered.

For the configuration and loading shown in Fig. 1 the stresses along the interface

directly ahead of the fight crack tip can be written in complex notation as [10]

(K I + i K2) r '_
o. +io_ = _ , i --_i (1)



where K_ and K2 are the bimaterial stress intensity factors and e is a bimaterial constant, also

referred to as an oscillation index, given by [10]

,- 2-_ + G,(3 -4v2) j
(2)

where G is the shear modulus and v is Poisson's ratio. Subscripts 1 and 2 refer to material 1

and 2, respectively. Interchanging the properties of materials 1 and 2 leads to a change in sign

of the bimaterial constant e. In the present paper, the materials 1 and 2 were chosen such that

E 2 was greater than E 1 which resulted in a positive value for e.

Unlike a crack in a homogeneous body, the singularity for a crack at the bimaterial

interface is of order (-1/2 + i e) as seen from Eq. (l). Also, the stress intensity factors K 1

and K 2 have units of (stress) x (length)0/2) x (length) -_. For the problem considered in Fig. 1,

the complex stress intensity factor K (= K 1 + iK2) for the right crack tip is given by [10]

K = _ (a. + i _,_)(1 + 2i e)(2a)-" (3)

The complex K is often characterized by its magnitude _x/K_ + K_J and its phase angle tk

which is given by

Equations (3) and (4) can also be used to characterize the left crack tip (Fig. 1).

However, to use the same equations, the reference coordinate axes x-y in Fig. 1 would have to

be rotated by 180 degrees. In the rotated coordinate system materials 1 and 2 are reversed
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leading to a sign change in e. Thus the K_ and K2 for the left crack tip can be obtained by

using -_ in place of e in Eq. (3).

As mentioned earlier, it was noted by Rice [12] that the small region of oscillations in

the crack tip stresses can be ignored just as the inevitable small scale nonlinear material

behavior at the crack tip in a homogeneous material is ignored in LEFM. The present study

considered the stresses outside this small region of oscillations to determine K1 and K 2.

For the configuration in Fig. l, it can be shown from the classical solution in [10] that

under shear loading the crack tip normal stresses, outside the small zone of oscillation, are

tensile at the right crack tip whereas they are compressive at the left crack tip. Thus, the stress

state at the right crack tip is more severe than at the left crack tip. The right crack tip was,

therefore, considered in more detail in the present study.

Finite Element Analysis

The finite element mesh used in the present study is shown in Fig. 2. It consisted of

four-noded isoparametric quadrilateral elements. The dimensions of the model were chosen to

be large enough to preclude edge effects and adequately model semi-infinite plates as in

Fig. 1. For the crack length-to-width ratio of 0.1 used here it was shown in [22] that the

calculated stress intensity factors were not affected by the presence of the free edges. There

were 2077 nodes and 1968 elements in the model and the analysis was performed using the

MSC/NASTRAN code [28]. In the vicinity of the crack tip, a refined mesh was used (Fig. 2).

The smallest elements with length A were next to the crack tip with element lengths doubling

in the x- and y-directions. Plane strain conditions were imposed for all cases analyzed. Multi-

point constraints were imposed along AB to enforce uniform exx in order to simulate the

infinite plate problem that was analyzed in [9]. The normal and shear loadings were imposed

by displacement boundary conditions along the edges of the model and are listed in Table 1.

Combinations of three different materials, aluminum, epoxy, and steel, were considered in the

present study. The properties used for the three materials are given in Table 2.
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The adequacy of the mesh refinement near the crack tip was evaluated in two ways.

First, a convergence study was performed by analyzing a center crack in an infinite

homogeneous plate problem. The same finite element model (Fig. 2) was used with E l = E2

and J'l = J'2. The computed nodal stresses and stress intensity factors (SIFs) under mode I and

mode II loading were compared with existing handbook values [29]. The SIFs were

determined by linear regression from a log-log plot of stress versus distance ahead of the crack

tip as described later. For a mesh refinement of A/a = 5x 10.6, the calculated SIFs were within

1% of the handbook values [29] for both mode I and mode II loading. Also, the slope of the

log-log stress-distance plot near the crack tip was compared with the theoretical value of -0.5.

In the region lxl0-s <(r/a) <-2x10 -2, its slope was -0.495.

To further evaluate the adequacy of this mesh refinement, the finite element model

(Fig. 2) was used to analyze a crack at the interface of two dissimilar materials. For

aluminum/epoxy, the computed nodal stresses near the crack tip were compared with the exact

solution (Eq. (1)) for o_ normal loading (Fig, 3) and for o_ shear loading (Fig. 4). The oxy

stresses under a normal loading are negative; -o,,y is plotted in Fig. 3 to show it on the log

scale. The non-singular elements used in this analysis are not formulated to model the

singularity at the crack tip. As a result, the stresses calculated from the first few elements next

to the crack tip do not correlate well with the classical solution. However, in the region

lxl0 -4 _(r/a) _2x10 -2, there is a good correlation with the theoretical stresses for both

loading conditions. Thus, the non-singular, isoparametric elements used in the present

analysis were considered to be adequate for this study. The mesh refinement of A/a = 5×10 .6

was used for all the cases analyzed.

The stress intensity factors K l and K2 for the right crack tip were calculated using a

simple procedure involving linear regression as described in the next section.



Procedure for Calculating K 1 and K2

The normal O'yy stresses and the shear O'xy stresses directly ahead of the right crack tip

are given by Eq. (1) and can be written explicitly (by separating real and imaginary parts) as

1
{K, cos(e In (r))

O'yy "-- _

1
- _{K, sin(e In (r))

_/2a- r

K2 sin(e In (r))}

+ K 2 cos(e In (r))}

(5)

By multiplying both sides of the ayy equation by cos(e In(r)) and both sides of the axy equation

by sin(e In(O) and adding the resulting equations and denoting the "combined stress" by _q, we

have

K, (6)
a I = a. cos(e In (r)) + a_ sin(e In (r)) =

Similarly, by multiplying the ayy equation (Eq. (5)) by -sin(e In(O) and the Oxy equation by

cos(e In(O) and adding the two equations and denoting the combined stress by _rz, we have

K2 (7)
a2 = -a. sin(e In (r)) + a,, cos(e In (r)) = 2d_--_

The combined stresses a I and a 2 at nodes ahead of the crack tip were determined from the

computed ayy and axy stresses from the finite dement analysis. It is clear from Eqs. (6) and

(7) that plots of a 1 and a2 with distance r on a log-log scale will be straight lines with a slope

of -0.5. The stress intensity factors K 1 and K 2 were calculated from a linear regression fit of

slope -0.5 to the log(a l) versus log(r) and log(a z) versus log(r) curves, respectively.



If either o I or o2 is computed to be a negative quantity, then the corresponding K 1 or

K2 will have a negative sign. The sign of trI and o2 was ignored while using the linear

regression procedure. The calculated K 1 or K2 was then assigned a negative sign if the

corresponding a I or a2 had a negative sign.

As mentioned earlier, the non-singular elements next to the crack tip do not model

singular behavior. Thus, the combined stresses cr_and a2 from the first two or three elements

will not lie on a line with a slope of -0.5 on a log-log plot of trI and a2 with distance r. Also,

the combined stresses from elements away from the crack tip outside the singularity-dominated

region will not lie on a line with a slope of -0.5.

The linear regression fit for calculating K_ and K2 was performed in the region where

the log(ol) versus log(r) and log(a2) versus log(r) curves had a slope of -0.5. This regression

region was determined by the following procedure: the slopes of the log-log plots of trI and o2

versus r were determined for successive pairs of nodes ahead of the crack starting from the

node at the crack tip. The pairs of nodes for which this slope was -0.5 + 0.01 were included

in the regression region and the combined stresses o1 and 02 from these nodes were used in the

calculation of K 1 and K2. This procedure was used to calculate K 1 and K2 for the normal and

the mixed-mode loading cases analyzed in this study.

Relations Between K 1 and K 2 under Normal and Shear Loading

In order to investigate the properties of K 1 and K2 under normal and shear loading it is

instructive to examine the crack-tip stresses for these two loading cases. Figure 5 shows the

normalized crack-tip stresses for these two loadings calculated for the aluminum/epoxy case

based on the classical solution given in [10]. It is clear from Fig. 5 that the crack-tip stresses

obey the following relations:



(a.),_o_= (_,_)s_ and (a_.)No....,
_r (]rx)' _r_y

__. (O_)S_ (8)

Using the relations in Eq. (8) together with Eq. (5) we have

{(KiN)No. _ COS(e In (r))

and

{(KIN)No,,.t sin(e. In (r)) +

(K2M).o,_ a sin(e In (r))} =

{(K,.)s_., since In (r)) + (Ks.)s_ cos(e In (r))}

(K2N)No.., COS(e In (r))} =

{-(KmN)s_..r cos(t: In (r))

(9)

+ (K2n)sh,_ r sin(e In (r))}

where

(Km)_o,_- (Kl)s*'_., and (K2N)N.,,, _ = (K2)N.,,_** (10)

Oyy Oyy

are the normalized stress intensity factors for the right crack tip under pure normal loading and

(KtN)sh,,__ (K,)_b,,_- and (K2N)s_,- (K2)_h'_- (11)

O'xy O'xy

are the normalized stress intensity factors for the right crack tip under pure shear loading.

multiplying both sides Of the first equation (Eq. (9)) by cos(e In(r)) and both sides of the

second equation (Eq. (9)) by sin(e In(r)) and adding the resulting equations we have the

following relation between the normalized stress intensity factors:

By

(12)
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Similarly, by multiplying both sides of the first equation (Eq. (9)) by -sin(e ln(r)) and both

sides of the second equation (Eq. (9)) by cos(e In(r)) and adding the resulting equations we

have the following relation between the normalized stress intensity factors:

(K2s)No_a _ -(K_N)s_,_ (13)

The relations in Eqs. (12) and (13) are valid for both the fight and the 1,eftcrack tips for the

configuration in Fig. 1. Although the relations in Eqs. (12) and (13) were derived from the

equations for the crack-tip stresses for the center crack configuration in Fig. 1, they are also

valid for the semi-infinite crack problem with point loading on the crack faces.

The relations in Eqs. (12) and (13) can also be derived by expanding Eq. (3) into real

and imaginary parts and examining the expressions for the normalized K l and K z under normal

and shear loading. For normal loading we have

(K,N)No.,,., = _ {COS(e In (2a))

(K2r_)No.,., = _ {-sin(e In (2a))

+ 2e sin(e In (2a))}

+ 2e cos(e In (2a))}
(14)

and for shear loading we have

(KiN)s_, = _ {-2e COS(e In (2a))

(K2N)s_ , = _ {2e sin(e In (2a))

+ sin(e In (2a))}

+ cos(e In (2a))}
(15)

An examination of Eqs. (14) and (15) confirms the validity of the relations derived in Eqs.

(12)and(13).
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The K l and K 2 under mixed-mode loading can be obtained by expanding Eq. (3) into

real and imaginary parts and using Eqs. (14) and (15) as

K, -- o'_ (K,N)som , + a_ (K,N)su_ ,

K 2 -o'_y (K2N)No,._ a + a_ (K2r_)su,ffi
(16)

Using Eq. (16) and the relations in Eqs. (12) and (13) the K 1 and K 2 under any combination of

normal and shear loading can be written as

K, = o_ (K,N)N_., - _ (K2n)No._,

K_ = _ (K_N)No_a + a_ (KIN)Som_
(17)

Thus, if (KiN)Nor,ra j and (K2N)Norma I are known for a particular material combination and

crack length, then K 1 and K 2 under any combination of normal and shear loading can be

determined by using Eq. (17).

Equations (17) can be used to generate K 1 and K 2 values for a range of mixed-mode

loadings for both the fight and the left crack tips based on a knowledge of the corresponding

(KiN)North! and (K2N)Normai. The K2/K l ratio, or tan(if) (see Eq. (4), for mixed-mode loading

can be expressed in terms of the ratio (K2/K1)Normal by using Eq. (17) as

As (tr _ / a _y) approaches :L-oo,the pure shear loading case, it can be shown that the fight

hand side of Eq. (18) approaches a limiting value of-(Kl/K2)Normal. Thus, Eq. (18) provides
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a means of calculating the (K2/KI) ratio or tan(_k) over the full range of mixed-mode ratios

from a knowledge of K 1 and K 2 for the normal loading case.

Equation (18) is valid for both the right and the left crack tips. However, the

appropriate (K2/Kl)Norma) ratio should be used in Eq. (18). For the left crack tip K 1 and K2

under normal loading can be calculated from a knowledge of K t and K 2 for the right crack tip.

By using -e in the place of e in Eq. (14) it can be shown that under normal loading the ratio of

the stress intensity factors at the left crack tip is equal to -(K2/K1) where K l and K 2 are the

stress intensity factors at the right crack tip.

Results and Discussion

The finite element analysis and procedure described above were used to calculate K 1

and K 2 for three different material combinations: aluminum/epoxy, steel/epoxy, and

steel/aluminum. Two different loading conditions were analyzed: normal loading (a_ = 0)

and mixed-mode loading with a _y = o _. In all cases the half-crack length, a, was 20 units.

The K2/K l ratios were plotted for a range of mixed-mode load ratios using Eq. (18).

Figure 6 shows normalized combined stresses a I and a2 for the normal loading case as

a function of normalized distance from the crack tip on a log-log plot. The circular symbols

indicate the locations at which nodal stresses were available from the finite element analysis.

Note that the a 2 combined stress was a negative quantity and -a 2 was plotted on the log scale in

the figure. The negative a 2 also led to a negative K2. There was very little difference between

the calculated a t values for the three material combinations which led to similar K 1 values

(Table 3). However, there was some difference between the calculated a2 values leading to

larger differences between the calculated K2 values for the different material combinations

(Table 3). As mentioned earlier, the results from the first few elements do not lie on a straight

line with a slope of-0.5. The appropriate regression region for calculating K 1 and K 2 was

determined as described earlier and was found to be 1.6×10 .4 <(r/a) _<lxl0 -2. Table 3 shows

a comparison between the exact [10] and the calculated normalized K t and K 2 for normal
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loading. There was excellent agreement between the calculated and the exact [10] K 1 and K 2

with errors of less than 2.6%. As the mismatch between the material properties decreased, the

K2 values became smaller with larger errors in the calculated values.

The mixed-mode loading case was analyzed to verify the relations derived in Eq. (17)

for calculating K l and K 2 from a knowledge of KIN and K2N under normal loading. Values

for KIN arid K2N under normal loading were taken from Table 3 (exact solution). These were

used together with the relations in Eq. (17) to calculate K 1 and K 2 (see Table 4) for the

o_ = o_ mixed-mode case. These results were compared with results calculated from the

finite element analysis. The nodal stresses ahead of the crack tip for the mixed-mode loading

case were obtained by superposing the nodal stresses from the pure normal and pure shear

loading cases. The regression region for this case was also found to be

1.6× 104 _<(r/a) < 1x 10"2. The excellent correlation (errors less than 3.7 %) between the

results using Eq. (17) and the finite element method (FEM) verifies the derivations in the

previous section. The crack-tip stresses for the two extreme loading cases of pure normal and

pure shear loading were verified earlier (Figs. 3 and 4) by comparing with the exact solution

[101.

Figures 7 and 8 show plots of the K2/K l ratios using Eq. (18) for two different ranges

of mixed-mode loading ratios. Figure 7 shows the normal-load dominated cases with mixed-

mode loading ratios ranging from 0 to 1.0. The (K2/Ki)No_a I ratios used were ob_ned from

the exact solution [10] in Table 3. Two limiting material combinations are also included for

reference purposes. The crack in a large homogeneous plate represents a bimaterial case with

no mismatch in material properties (e=0). For this case the K2/K 1 ratio is equivalent to the

ratio of classical mode II and mode I stress intensity factors, Kn and KI, respectively. The

rigid/epoxy case represents a case in which the mismatch between the properties is

characterized by a relatively large value of the bimaterial constant, e =0.094. The K2/K 1

curves for all cases fell between the two extremes represented by these two limiting cases;

cases with the larger material property mismatch were closer to the rigid/epoxy case. For the
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modeI loadingcase(a_ / a_ = 0), the K2/K 1 ratio is negative due to the presence of a

negative shear stress at the crack tip (Fig. 3). For mixed-mode ratios between 0.0 and 0.5, the

K2/K l ratio increases linearly with approximately the same slope as the homogeneous crack

case. Unlike the homogeneous crack case, the K2/K l ratios for the bimaterial cases under

Oo

equal normal and shear loading (axy / a_ = 1) have values less than 1.0 (Fig. 7). This is due

to the negative shear stress (Fig. 3) at the crack tip, which under normal loading subtracts

from the positive shear stress (Fig. 4) under shear loading.

Figure 8 show plots of the Kz/K 1 ratios from Eq. (18) over the full range of mixed-

mode loading but with an emphasis on the shear dominated cases. For the shear dominated

loading, the curves are highly nonlinear and there is significant departure from the

homogeneous case. The nonlinearity in the curves can be explained by examining Eq. (18) for

the aluminum/epoxy case (K2/K 1 = -0.11). For this case, the denominator in Eq. (18)

becomes more dominant for mixed-mode ratios greater than 1 and, thus, leads to the

nonlinearity in the curves. For pure mode II loading the (K2/KI) ratios approach a limiting

value of -(K1/K2)Normal as discussed earlier.

Fracture toughness of the interface between two different materials can be characterized

by measuring the critical strain energy release rate Go over a range of K2/K 1 ratios. The

present study provides a simple equation (Eq. (18)) to determine these values for the (K2/K,)

ratios over the full range of mixed-mode loadings if the (K2/Kl)Normal ratio under normal

loading is known. The (K2/Kt)Normal ratio for any configuration can be determined using

conventional, non-singular finite elements and the simple regression procedure developed in

this study.

Concluding Remarks

A simple technique was developed using conventional finite element analysis to

determine stress intensity factors for interface cracks under mixed-mode loading. This

i technique involved the calculation of crack-tip stresses using non-singular finite elements.
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These stresses were then combined and used in a linear regression procedure to calculate

interface stress intensity factors K 1 and K2 . The technique was demonstrated by calculating

K l and K2 for three different bimaterial combinations. The nature of the stress intensity

factors K 1 and K2 was studied over the full range of mixed-mode loadings and compared to the

limiting cases of a crack in a homogeneous plate and a bimaterial crack at the interface of a

rigid substrate and epoxy.

For the normal loading case, the calculated K1 and K2 were within 2.6% of an exact

solution. The normalized K l and K2 under shear loading were shown to be related to the

normalized K 1 and K2 under normal loading. Based on these relations a simple equation was

derived for calculating K 1 and K2 for mixed-mode loading from a knowledge of K 1 and K 2

under normal loading. Thus, for a given material combination and crack length, only one

solution of K l and K2 under normal loading is required to determine K 1 and K 2 over the full

range of mixed-mode loading conditions.

This equation was verified by computing K 1 and K2 for a mixed-mode case with equal

normal and shear loading. Once again the correlation between the classical and the finite

element values was very good with errors of less than 3.7%.

This study provides a simple procedure to compute the K2/K 1 ratio which can be used

to characterize the stress state at the crack tip for various combinations of materials and

loadings. Tests conducted over a range of K2/K 1 ratios could be used to fully characterize

interface fracture toughness.
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Table 1 -- Displacement boundary conditions for normal and shear loading.

z : _.

I III I I

Loading Boundary condition at

x=0 x= 10a y=-30a y=30a

Normal u=0 u=const, a v=0 v= 1

Shear v = 0 v = (1/3) u = 0 u -- 1
I II

"A constant displacement was imposed using multi-point constraints.

Table 2 -- Material properties used in the analysis.

II • I

Property Aluminum Epoxy Steel

Young's modulus, E (GPa) 68.95 3.10 206.85

Poisson's Ratio, u 0.30 0.35 0.30
I
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Table 3 -- Comparison of interface stress intensity factors under o _ normal loading.

Bimaterial e

I II I

Ref. [10] Present Ref. [10] Present

Steel/Aluminum 0.046 1.001 0.991 -0.078 -0.080
J

Aluminum/Epoxy 0.067 1.002 0.996 -0.115 -0.116

Steel/Epoxy 0.072 1.003 0.996 -0.124 -0.126

Table 4 -- Comparison of interface stress intensity factors for mixed-mode loading

(o" -o_ = Oo).YY

Bimaterial e K,/(ao _f-_) K2/(Oo 4-_)

Eq. [17] FEM Eq. [17] FEM

Steel/Aluminum 0.046 1.079 1.056 0.923 0.929

Aluminum/Epoxy 0.067 1.117 1.076 0.888 0.892

Steel/Epoxy 0.072 1.127 1.098 0.879 0.882
I II II
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